High resolution discharge simulations over Europe and the Baltic Sea catchment

Stefan Hagemann, Tobias Stacke^{*} and Ha T.M. Ho-Hagemann

Max-Planck-Institut für Meteorologie

Helmholtz-Zentrum Geesthacht

Global Water Cycle

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Thanks to Norbert Noreiks, MPI-M

Generating runoff in different communities

- ✤ Hydrology: GHMs or local/regional HMs forced by CM input.
 - + Specific impact model focusing on hydrology
 - + GCM/RCM biases may be corrected
 - Local/regional HMs are often calibrated, but for current climate.
 - Hydrology may be inconsistent with GCM/RCM forcing
 - No feedbacks to the atmosphere
 - Another level of uncertainty is added

Global modelling chain in WATCH or ISIMIP

Generating runoff in different communities

- Hydrology: GHMs or local/regional HMs forced by CM input.
 - + Specific impact model focusing on hydrology
 - + GCM/RCM biases may be corrected
 - Local/regional HMs are often calibrated, but for current climate.
 - Hydrology may be inconsistent with GCM/RCM forcing
 - No feedbacks to the atmosphere
 - Another level of uncertainty is added
- Climate: Within LSMs of GCMs or RCMs
 - + Runoff/land surface variables are consistent with climate variables
 - + Hydrology atmosphere feedbacks are regarded.
 - Potentially large biases exists due to climate model biases, especially in precipitation

Regional ESM: GCOAST

6

The Hydrological Discharge (HD) model

Lateral transport of water over the land surface to simulate

discharge into the oceans

Hagemann & Dümenil (1998) Clim. Dyn. Hagemann & Dümenil Gates (2001) JGR

HD model structure

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

- > State of the art discharge model
- Applied and validated on global scale at 1/2 deg.
- > Part of MPI-ESM
- Time step: 1 day (internally 6 hours for riverflow)

<u>Coupled in regional ESMs</u> RegCM-ES (Sitz et al. 2017) ROM (Sein et al. 2015) REMO-MPIOM (Elizalde et al. 2011)

Increase resolution from 0.5° (50-55 km) to 5 Min. (8-9 km)

Monthly discharges: 2000-2003

Helmholtz-Zentrum Geesthacht

Daily discharges 2000-2003: Resolution matters

Helmholtz-Zentrum Geesthacht

- Increase resolution from 0.5° (50-55 km) to 5 Min. (8-9 km)
- > Apply some general scaling factors to HD model parameters
- > No river specific tuning or calibration!
- ➢ Reference run: 1979-2009
- Test runs: 1999-2009 using restart file of reference run
- Evaluation: 2000-2009

Simulated discharge: 2004-2009

Helmholtz-Zentrum Geesthacht

Evaluation metrics using observations

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Kling-Gupta Efficiency

RMSE

Evaluation metrics using observations

Helmholtz-Zentrum Geesthacht

Simulated discharge: 2004-2009

Helmholtz-Zentrum Geesthacht

Differences of Test1 to HD5 REF

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Kling-Gupta Efficiency

Correlation

- Test1: Adjusted main stream velocities to correct for lag to observations
 - Main stream = Main river path from an upstream catchment > 5000 km² until the station.
 - > Main river path starts at grid box with the longest distance to the mouth

Simulated discharge: 2004-2009

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

 $-0.55 \ -0.45 \ -0.35 \ -0.25 \ -0.15 \ -0.050 \ 0.050 \ 0.15 \ 0.25 \ 0.35 \ 0.45 \ 0.55 \ 0.65 \ 0.75 \ 0.85$

Catchments with daily data

- Observed daily discharges are required:
 - HD model evaluation
 - > Tuning of HD main stream velocities
 - Forcing for ocean and ocean BGC models

Catchments with daily data

- Most data are from GRDC, some are from other sources
- Missing larger catchments (> 5000 km²):
 - Station currently not available
 - No available data at all
 - Time series too short
- Who has further observed daily discharges?

- Discharge model resolution of 0.5° usually sufficient if monthly river runoff from larger catchments is considered.
- For daily river runoff and smaller catchments, higher resolution is required.
- Simple transfer of HD model to 5 Min. resolution using some global scaling factors for model parameters yields good results for many European rivers
- Deficiencies occur where
 - > Rivers are heavily regulated, especially in Scandinavia
 - Rivers are impacted by human water abstractions
 - > 0.5 degree atmospheric forcing is too coarse
 - Forcing JSBACH has deficiencies in the timing of snow melt

Thank you for your attention!

Evaluation metrics using observations

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Nash-Sutcliffe Efficiency

Bias

